nczl.net
当前位置:首页 >> x本身展开成x的幂级数 >>

x本身展开成x的幂级数

x展开成x的幂级数,怎么展开解:f(x)=(3x-5)/[(x-3)(x-1)]=A/(x-1)+B/(x-3)A(x-3)+B(x-1)=(A+B)x-3A

展开成x的幂级数..+(n-1)/(n!)x^(n-2) (n从2到无穷大)即为幂级数 ∑ (n-1)/(n!)x^(n-2) (n从2到无穷大)

将函数f(x)展开成x幂级数齐次就是arctanx的展开,将其求导,1/(1+x^2),利用1/(1+u)(或ln(1+u))的幂级数展开即可.

f(x)=x展开成x的幂级数,请问如何展开?=(1/2)(x+x^3/3+…)+(1/2)(x-x^3/3+x^5/5-…)-x =x^5/5+x^9/9+x^13/13+…

展开为x的幂级数相等的。本来一个式子的幂级数形式不唯一

将函数f(x)展开为x的幂级数并求其收敛域f(x)=1/(x-2)-1/(x-1)=1/(1-x)-1/(2-x)因为1/(1-x)=1+x+x^2+x^3++x^n+=∑(n从0到∞)x^

将下列函数展开成x的幂级数?x的幂级数为a0+a1x+a2x^2+它与第一项1的乘积为它本身,即为 a0+a1x+a2x^2+它与第

将函数展开成x的幂级数一个函数的幂级数展开式只依赖函数在展开点出的各阶导数,这是Taylor级数的优点。但从另一方面看,这又

函数展开为x的幂级数∴e^x-1=x+x^2/2+x^3/6++(x^n)/(n!) (n从0到无穷大)∴(e^x-1)/x=1+x/2+x^2/6+..+[x^(n

展开成x的幂级数,谢谢= 1/(1-x)-1/(2-x)= 1/(1-x)-(1/2)/(1-x/2)]= ∑(n≥0)(x^n) - (1/2)∑(

wlbk.net | bdld.net | zxqt.net | sgdd.net | jtlm.net | 网站首页 | 网站地图
All rights reserved Powered by www.nczl.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com